
Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 43 | P a g e

Data Sharing Using Cloud Information Accountability

Framework

Chaitanya Chavali*, Lakshmi Prasad Koyi**, Dr.C. S Kumar***, Dr. N.

Raghava Rao****
*Department of Computer Science and Engineering, QIS College of Engineering and Technology, Ongole-

523272.

**Assistant Professor, Department of Computer Science and Engineering, QIS College of Engineering and

Technology.

*** Professor, Department of Computer Science and Engineering, QIS College of Engineering and Technology.

****Professor, Department of Computer Science and Engineering, QIS College of Engineering and Technology.

Abstract
Cloud Information Accountability (CIA) framework, based on the notion of information accountability. Unlike

privacy protection technologies, information accountability focuses on keeping the data usage transparent and

traceable. Our proposed CIA framework provides end-to end accountability in a highly distributed fashion. One

of them an innovative feature of the CIA framework lies in its ability of maintaining lightweight and powerful

accountability that combines aspects of access control, usage control and authentication, and security issues.

Index Terms: Cloud computing, Framework, Accountability, Data sharing, Cloud Service Provider.

I. INTRODUCTION
Cloud computing is the use of computing

resources(H/w & S/w) that are delivered as a service

over a network (typically the internet).Cloud

computing refers to the delivery of computing and

storage capacity as a services to a heterogeneous

community of end-recipients the name comes from

the use of clouds as an abstraction for the complex

infrastructure. It provides remote services with a

user’s data, software and computation over a network.

Cloud computing is the newest term for the long-

dreamed vision of computing as a utility. Cloud

computing is scalable services. Cloud computing is a

computing platform that resides in a large data center

and is able to dynamically provide servers the ability

to address a wide range of needs, ranging from

scientific research to e-commerce. Cloud computing

is expanding rapidly as service used by a great many

individuals and organizations internationally, policy

issues related to cloud computing. Details of the

services provided are abstracted from the users who

no longer need to be experts of technology

infrastructure. Moreover, users may not know the

machines which actually process and host their data.

While enjoying the convenience brought by this new

technology, users also start worrying about losing

control of their own data. The data processed on

clouds are often outsourced, leading to a number of

issues related to accountability, including the

handling of personally identifiable information. It is

necessary to provide an effective mechanism for users

to monitor the usage of their data in the cloud. For

example, users need to be able to ensure that their

data are handled according to the service level

agreements made at the timeThey sign on for

services. Conventional access control approaches

developed for closed domains such as Databases and

operating systems, or approaches using a centralized

server in distributed environments, are not suitable,

due to the following features characterizing cloud

environments. First, data handling can be outsourced

by the direct cloud service provider (CSP) to other

entities in the Cloud and these entities can also

delegate the tasks to others, and so on. Outsourcing of

data processing invariably raises governance and

accountability questions. Second, entities are allowed

to join and leave the cloud in a flexible manner. As a

result, data handling in the cloud goes through a

complex and dynamic hierarchical service chain

which does not exist in conventional environments.

Cloud computing is expanding rapidly as service used

by a great many individuals and organizations

internationally, policy issues related to cloud

computing.

We propose a, namely Cloud Information

Accountability (CIA) framework, based on the notion

of information accountability. Privacy protection

technologies built on the hide-it-or-lose-it

perspective, information accountability focuses on

keeping the data usage transparent and track able.

RESEARCH ARTICLE OPEN ACCESS

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 44 | P a g e

Our proposed CIA framework provides end-to end

accountability in a highly distributed fashion. One of

the main innovative features of the CIA framework

lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of

access control, usage control and authentication. Data

owners can track not only whether or not the service-

level agreements are being honored, but also enforce

access and usage control rules as needed. Associated

with the accountability feature, we also develop two

distinct modes for auditing: push mode and pull

mode. The push mode refers to logs being

periodically sent to the data owner or stakeholder

while the pull mode refers to an alternative approach

whereby the user (or another authorized party) can

retrieve the logs as needed.

The design of the CIA framework presents

substantial challenges, including uniquely identifying

CSPs, ensuring the reliability of the log, security

issues, accountability (The Obligation of an

individual(or) Organization to account for its

activities, accept responsibility for them.), adapting

to a highly decentralized infrastructure, etc. Our basic

approach toward addressing these issues is to

leverage and extend the programmable capability of

JAR (Java Archives) files to automatically log the

usage of the users’ data by any entity in the cloud.

JAR file includes a set of simple access control rules

specifying whether and how the cloud servers and

possibly other data stakeholder’s are authorized to

access the content itself. JAR will provide usage

control associated with logging (or) will provide only

logging associated with logging functionality. Users

will send their data along with any policies such as

access control policies and logging policies that they

want to enforce, enclosed in JAR files, to cloud

service providers. Any access to the data will trigger

an automated and authenticated logging mechanism

local to the JARs. We refer to this type of

enforcement as “strong binding” since the policies

and the logging mechanism travel with the data. This

strong binding exists even when copies of the JARs

are created; thus, the user will have control over his

data at any location. Such decentralized logging

mechanism meets the dynamic nature of the cloud but

also imposes challenges on ensuring the integrity of

the logging. To cope with this issue, we provide the

JARs with a central point of contact which forms a

link between them and the user. It records the error

correction information sent by the JARs, which

allows it to monitor the loss of any logs from any of

the JARs. Moreover, if a JAR is not able to contact its

central point, any access to its enclosed data will be

denied.

The results demonstrate the efficiency,

scalability, and granularity of our approach. We also

provide a detailed security analysis and discuss the

reliability and strength of our architecture. The

following new contributions. First, we integrated

integrity checks and oblivious hashing (OH)

technique to our system in order to strengthen the

dependability of our system in case of compromised

JRE. We also updated the log records structure to

provide additional guarantees of integrity and

authenticity. Second, we extended the security

analysis to cover more possible attack scenarios.

Third, we report the results of new experiments and

provide a thorough evaluation of the system

performance. Fourth, we have added a detailed

discussion on related works to prepare readers with a

better understanding of background knowledge.

Finally, we have improved the presentation by adding

more examples and illustration graphs.

II. ENHANCING THE

ACCOUNTABILITY
Cloud computing may be a massive

infrastructure which give several services to user

while not installation of resources on their own

machine. This is often the pay as you utilize model.

Samples of the cloud services are Yahoo email,

Google, Gmail and Hotmail. There are several users,

businesses, government uses cloud, thus knowledge

usage in cloud is massive. Thus knowledge

maintenance in cloud is advanced. Several Artists

desires to try to business of their art victimization

cloud. As an example one amongst the creative

person need to sell his painting victimization

Cloud then he need that his paintings should be safe

on cloud nobody will misuse his paintings.

A. Cloud Ingredients

There is need to be compelled to offer

technique that is ready to audit information in cloud.

On the idea of accountability, we've an inclination to

projected one mechanism that keeps use information

clear suggests that data owner got to get information

regarding use of his information. This process support

accountability in distributed area, data owner should

not problem regarding his information, he may

acknowledge his information is handled per service

level agreement and his information is riskless on

cloud. Data owner will determine the authorization

principles and policies and user will handle

information victimization this rule and logs of each

information access are created. Throughout this

mechanism there are unit two main parts i.e. logger

and log harmonizer. The feller is with the data

owner's information, it provides work access to

information and encrypts log record by pattern public

key that's given by data owner and send it to log

harmonizer. The log harmonizer is taking part in the

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 45 | P a g e

observance and rectifying, it generates the key it

holds cryptography key decrypting the logs, and at

the consumer side cryptography it sends key to

shopper. Throughout this mechanism data owner will

creates personal key and public key, pattern generated

key owner will produce feller that will be a JAR file,

it encloses his authorization principles and work

policies with information send to cloud service

provider.

Authentication of cloud service provider has

been done exploitation open SSL based totally

certificates once authentication of cloud service

provider user are able to access information in JAR,

log of each data usage has been generated and

encrypted exploitation public key and it automatically

send to log harmonizer for integrity log records are

signed by entity that's exploitation the information

and log records are decrypted and accessed by owner.

In push state logs are automatically transferred to data

owner and in pull state owner may claim logs,

therefore he may observe information access at

anytime, anywhere and he can do inspection of his

information.

Overall Architecture

Fig.1

The main intention of architecture is, here

data owner, cloud service provider, user. Every user

can register first, i.e. data owner, normal user, csp.

The overall CIA framework, combining information,

users, logger and harmonizer is sketched in figure. At

the start, every user creates a combine of public and

personal keys supported Identity-Based encoding.

This IBE scheme could be a Weil-pairing-based IBE

scheme that protects us against one among the most

current attacks to our design as described in

exploitation the generated key, the user can produce a

logger part that may be a JAR file, to store its data

items. (FIG.1)

B. Flow of Data

The JAR file includes a collection of easy

access management rules specifying whether and the

way the cloud servers, and probably different

information stakeholders (users, companies) are

licensed to access the content itself. At the same time,

he transfers the JAR file to the cloud service provider

that he subscribes to. To certify the CSP to the JAR

(FIG.1.1) we have a tendency to use open SSL-

primarily based certificates, whereby a trustworthy

certificate authority certifies the CSP. Within the

event that the access is requested by a user, we have a

tendency to use SAML-based authentication, whereby

a reliability identity provider problems certificates

confirmative the user's identity supported his

username.

FIG.1.1 Accountability Mechanism in cloud

Once the authentication succeeds, the

service providers (or the user) are going to be allowed

to access the information enveloped within the JAR.

Depending on the configuration settings outlined at

the time of creation, the JAR can give usage

management related to logging, or can give solely

work practicality. As for the work, when there's

associate access to the information, the JAR can

mechanically generate a log record, encipher it

victimization the general public key distributed by the

data owner, and store it alongside the information.

The encoding of the log file prevents unauthorized

changes to the file by attackers.

The data owner could opt to reuse the same

key pair for all JARs or create different key pairs for

different JARs. Using separate keys are able to

improve the authorization without introducing any

overhead except in the starting phase. In inclusion,

some error correction data will be sent to the log

harmonizer to handle possible log file corruption. To

ensure reliability of the logs, each record is signed by

the entity accessing the content.

In earlier, own records are hashed together

to create a chain formation, can easily identify

possible errors or losts files. The encrypted log

records may be decrypted afterward and their

integrity checked. They will be accessed by the data

owner and other authorized stakeholders at any time

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 46 | P a g e

for auditing purposes with the aid of the log

harmonizer. Researchers have investigated

accountability mostly as a provable property through

cryptographic mechanisms, particular in the context

of electronic commerce. The authors propose the

usage of policies attached to the data and present

logic for accountability data in distributed settings.

Logic for accountability data in distributed settings,

similarly. This IBE scheme could be a Weil-pairing-

based IBE scheme that protects us against one among

the most current attacks to our design as described in

exploitation the generated key, the user can produce a

logger part that may be a JAR file, to store its data

items.

Our proposed framework prevents various

attacks such as detecting illegal copies of users'

information. Hence our work is distinct from normal

logging methods which use encryption to secure log

records. Their logging techniques are neither

automatic nor shared. They request the information to

lie within the boundaries of the centralized system for

the logging to be able, which is not appropriate in the

cloud State transition diagram is machine that shows

no of states, machine take input from outside world

and every input will turn out machine to travel next

step. Following transition diagram shows the various

states of Accountability mechanism in cloud i.e.

however it changes from one state to next state.

Fig.2. State Transition Diagram

Where,

0: Unsuccessful

1: Successful

Transitions are:

S0: Data Owner will send data to logger.

S1: Data Owner will create logger which is a jar file

to store data and principles.

S2: Authentication of CSP to JAR file.

S3: Authentication of user. S4: owner can see merge

log

C. Fog computing methodology

In this paper which proposes a different

approaches for securing data in the cloud using

offensive decoy method. We supervise information

access in the cloud and detect abnormal data access

patterns. When unsecured access is identified and

after checked by raising queries, we utilize a mislead

attack by forwarding large amounts of decoy

information to the attacker. This prevents the

utilization of the user's own information. Hypothesis

supervises in a local file context provides evidence

that this approach may provide unprecedented levels

of user data security in a Cloud environment. We use

this technology to launch disinformation attacks

against harmful groups, protecting from noticeably

the real sensitive customer data from fake worthless

data. In this paper, which propose two ways of using

Fog computing to prevent attacks such as the Twitter

attack, by retrieving decoy data inside the Cloud by

the Cloud service customer and within personal

online social networking profiles by individual user?

The basic idea is that we can limit the damage of

stolen data if we decrease the value of that stolen

information to the attacker. We can achieve this

through a 'preventive' mislead attack. We assume that

protected Cloud events may be implemented by given

two additional security features:

1) User Behavior Profiling:

It is expected that access to a user's

information in the Cloud will exhibit a normal access.

User profiling is a popular method that can be applied

here to design how, when, and how much a client

utilizes their data in the Cloud. Such 'normal user'

behavior can be continuously checked to determine

whether abnormal access to a user's information is

happening or not. This procedure of behavior-basis

protection is commonly used in fraud detection

applications. Such prominence usually consists of

metered information, how many documents are

commonly read. These user- distinguish features may

serve to detect abnormal Cloud access based partially

upon the scale and scope of data transferred.

2) Decoys:

Decoy information, such as decoy

documents, honey files, honey pots, and various other

bogus information can be generated on demand and

serve as a means of detecting unauthorized access to

information and to 'poison' the thief's ex-filtrated

information. Serving decoys will confound and

confuse an attacker into believing they have ex-

filtrated useful information or not. This method may

be integrated with user behavior profiling technology

to secure a user's information in the Cloud. Whenever

exceptional access to a cloud events are observed,

decoy data can be get back by the Cloud and

delivered in such a way as to appear completely

lawful. The real user, who is the owner of the data,

would readily identify when decoy information is

being returned by the Cloud, and might alter the

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 47 | P a g e

Cloud's responses through a variety of means, such as

challenge questions, to inform the Cloud security

system that it has inaccurately detected an unsecured

access. In the situation where the access is accurately

identified as an unauthorized access, the Cloud

security system would deliver unbounded amounts of

bogus information to the attacker, thus protecting the

user's real information from unsecured disclosure.

The decoys contribute two features: (1)

validating whether data access is authorized when

abnormal information access is detected, and (2)

confusing the attacker with bogus information. These

posit that the combination of these two security

features will provide unprecedented levels of security

for the Cloud. No current Cloud security mechanism

is available that provides this level of security.

III. MODULES
The major buildings modules of proposed

systems are five they are.

3.1. Data Owner Module

3.2. Jar Creation Module

3.3. Cloud Service Provider Module

3.4. Disassembling Attack

3.5. Man-in-the-Middle Attack

3.1. Data Owner Module:

In this module, the data owner uploads their

data in the cloud server. The new users can register

with the service provider and create a new account

and so they can securely upload the files and store it.

For the security purpose the data owner encrypts the

data file and then store in the cloud. The Data owner

can have capable of manipulating the encrypted data

file. And the data owner can set the access privilege

to the encrypted data file. To allay users’ concerns, it

is essential to provide an effective mechanism for

users to monitor the usage of their data in the cloud.

For example, users need to be able to ensure that their

data are handled according to the service level

agreements made at the time they sign on for services

in the cloud.

3.2. Jar Creation Module

In this module we create the jar file for every

file upload. The user should have the same jar file to

download the file. This way the data is going to be

secured. The logging should be decentralized in order

to adapt to the dynamic nature of the cloud. More

specifically, log files should be tightly bounded with

the corresponding data being controlled, and require

minimal infrastructural support from any server.

Every access to the user’s data should be correctly

and automatically logged. This requires integrated

techniques to authenticate the entity that accesses the

data, verify, and record the actual operations on the

data as well as the time that the data have been

accessed. Log files should be reliable and tamper

proof to avoid illegal insertion, deletion, and

modification by malicious parties. Recovery

mechanisms are also desirable to restore damaged log

files caused by technical problems. The proposed

technique should not intrusively monitor data

recipients’ systems, nor it should introduce heavy

communication and computation overhead, which

otherwise will hinder its feasibility and adoption in

practice.

3.3. Cloud Service Provider Module

The cloud service provider manages a cloud

to provide data storage service. Data owners encrypt

their data files and store them in the cloud with the jar

file created for each file for sharing with data

consumers. To access the shared data files, data

consumers download encrypted data files of their

interest from the cloud and then decrypt them.

3.4. Disassembling Attack

In this module we show how our system is

secured by evaluating to possible attacks to

disassemble the JAR file of the logger and then

attempt to extract useful information out of it or spoil

the log records in it. Given the ease of disassembling

JAR files, this attack poses one of the most serious

threats to our architecture. Since we cannot prevent

an attacker to gain possession of the JARs, we rely on

the strength of the cryptographic schemes applied to

preserve the integrity and confidentiality of the logs.

Once the JAR files are disassembled, the attacker is

in possession of the public IBE key used for

encrypting the log files, the encrypted log file itself,

and the *.class files. Therefore, the attacker has to

rely on learning the private key or subverting the

encryption to read the log records. To compromise

the confidentiality of the log files, the attacker may

try to identify which encrypted log records

correspond to his actions by mounting a chosen

plaintext attack to obtain some pairs of encrypted log

records and plain texts. However, the adoption of the

Weil Pairing algorithm ensures that the CIA

framework has both chosen cipher text security and

chosen plaintext security in the random oracle model.

Therefore, the attacker will not be able to

decrypt any data or log files in the disassembled JAR

file. Even if the attacker is an authorized user, he can

only access the actual content file but he is not able to

decrypt any other data including the log files which

are viewable only to the data owner.1 From the

disassembled JAR files, the attackers are not able to

directly view the access control policies either, since

the original source code is not included in the JAR

files. If the attacker wants to infer access control

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 48 | P a g e

policies, the only possible way is through analyzing

the log file. This is, however, very hard to accomplish

since, as mentioned earlier, log records are encrypted

and breaking the encryption is computationally hard.

Also, the attacker cannot modify the log files

extracted from a disassembled JAR. Would the

attacker erase or tamper a record, the integrity checks

added to each record of the log will not match at the

time of verification, revealing the error. Similarly,

attackers will not be able to write fake records to log

files without going undetected, since they will need to

sign with a valid key and the chain of hashes will not

match.

3.5. Man-in-the-Middle Attack.

In this module, an attacker may intercept

messages during the authentication of a service

provider with the certificate authority, and reply the

messages in order to masquerade as a legitimate

service provider. There are two points in time that the

attacker can replay the messages. One is after the

actual service provider has completely disconnected

and ended a session with the certificate authority. The

other is when the actual service provider is

disconnected but the session is not over, so the

attacker may try to renegotiate the connection. The

first type of attack will not succeed since the

certificate typically has a time stamp which will

become obsolete at the time point of reuse. The

second type of attack will also fail since renegotiation

is banned in the latest version of open SSL and

cryptographic checks have been added.

IV. PERFORMANCE STUDY
In this section, we first introduce the settings

of the test environment and then present the

performance study of our system.

4.1 Experimental Settings

We tested our CIA framework by setting up

a small cloud, using the Emulab test bed. In

particular, the test environment consists of several

open SSL-enabled servers. One head node which is

the certificate authority and several computing nodes.

Each of the servers is installed with Eucalyptus.

Eucalyptus is an open source cloud implementation

for Linux-based systems. It is loosely based on

Amazon EC2, therefore bringing the powerful

functionalities of Amazon EC2 into the open source

domain. We used Linux-based servers running Fedora

10 OS. Each server has a 64-bit Intel Quad Core

Xeon E5530 processor, 4 GB RAM, and a 500 GB

Hard Drive. Each of the servers is equipped to run the

open JDK runtime environment with IcedTea6 1.8.2.

4.2.2 Authentication Time

The next point that the overhead can occur is

during the authentication of a CSP. If the time taken

for this authentication is too long, it may become a

bottleneck for accessing the enclosed data. To

evaluate this, the head node issued open SSL

certificates for the computing nodes and we measured

the total time for the open SSL authentication to be

completed and the certificate revocation to be

checked.

Considering one access at the time, we find

that the authentication time averages around 920 ms

which proves that not too much overhead is added

during this phase. As of present, the authentication

takes place each time the CSP needs to access the

data. The performance can be further improved by

caching the certificates.

V. CONCLUSION
We proposed to improve different types of

approaches for automatically logging any access to

the data in the cloud together with an auditing

mechanism. We would like to support a variety of

security mechanism, indexing policies for text files,

usage control for executables, time to time logging

and closing of section.

REFERENCES
[1] Smitha Sundareswaran, Anna C.

Squicciarini, Member, IEEE, and Dan Lin,

“Ensuring Distributed Accountability for

Data Sharing in the Cloud”, IEEE

Transactions on Dependable and Secure

Computing, Vol. 9, No. 4, July/August 2012.

[2] P. Ammann and S. Jajodia, “Distributed

Timestamp Generation in Planar Lattice

Networks,” ACM Trans. Computer Systems,

vol. 11, pp. 205-225, Aug. 1993.

[3] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D.

Song, “Provable Data Possession at

Untrusted Stores,” Proc. ACM Conf.

Computer and Comm. Security, pp. 598-

609, 2007.

[4] E. Barka and A. Lakas, “Integrating Usage

Control with SIP-Based Communications,”

J. Computer Systems, Networks, and

Comm., vol. 2008, pp. 1-8, 2008.

[5] D. Boneh and M.K. Franklin, “Identity-

Based Encryption from the Weil Pairing,”

Proc. Int’l Cryptology Conf. Advances in

Cryptology, pp. 213-229, 2001.

[6] R. Bose and J. Frew, “Lineage Retrieval for

Scientific Data Processing: A Survey,” ACM

Computing Surveys, vol. 37, pp. 1-28, Mar.

2005.

Chaitanya Chavali et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 2), February 2014, pp.43-49

www.ijera.com 49 | P a g e

[7] P. Buneman, A. Chapman, and J. Cheney,

“Provenance Management in Curated

Databases,” Proc. ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD ’06),

pp. 539-550, 2006.

[8] B. Chun and A.C. Bavier, “Decentralized

Trust Management and Accountability in

Federated Systems,” Proc. Ann. Hawaii Int’l

Conf. System Sciences (HICSS), 2004.

[9] OASIS Security Services Technical

Committee, “Security Assertion Markup

Language (small) 2.0,”

http://www.oasis-open.org/ committees/tc

home.php? Wg abbrev=security, 2012.

[10] R. Corin, S. Etalle, J.I. den Hartog, G.

Lenzini, and I. Staicu, “A Logic for Auditing

Accountability in Decentralized Systems,”

Proc. IFIP TC1 WG1.7 Workshop Formal

Aspects in Security and Trust, pp. 187-201,

2005.

[11] B. Crispo and G. Ruffo, “Reasoning about

Accountability within Delegation,” Proc.

Third Int’l Conf. Information and Comm.

Security (ICICS), pp. 251-260, 2001.

[12] Y. Chen et al., “Oblivious Hashing: A

Stealthy Software Integrity Verification

Primitive,” Proc. Int’l Workshop

Information Hiding, F. Petit colas, ed., pp.

400-414, 2003.

http://www.oasis-open.org/

